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[Reviewed by David P. Roberts, on 05/08/2008] 

Algebraic geometry is a central field within mathematics which is often viewed as 
difficult for outsiders to enter. Recent years have seen many books which present 
various topics of algebraic geometry from a computational viewpoint, thereby 
making the subject more accessible. The book under review, RAC for short, is part of 
this positive trend. Its main focus is parametrizing rational plane algebraic curves. It 
is a graduate level text aimed at fairly wide readership, including for example 
readers interested primarily in computer-aided geometric design. 

To give an idea of the content and level of RAC, I will slowly work out its Exercise 
4.20: 

Let C be the affine curve defined by 

f(x,y) = x4 – 11xy – 9x2y – 6x3y + 23y2 + 16xy2 – 20y3 + 5xy3 + y4 = 0.
 

  

Compute a rational parametrization of C . 

The problem has been posed in purely algebraic terms and, as we'll see, can be 
solved in purely algebraic terms. But ignoring geometry would be missing half of 
algebraic geometry! So we type the given polynomial into a computer algebra 
system to draw part of C in the x-y plane. We thereby obtain a monochromatic 

version of Figure 1. We learn 
immediately that at three points 
in this window, the curve C looks 
locally like the letter X. The three 
crossing points are called 
singularities, and they will play an 
important role in our algebraic 
solution. Figure 1 draws these 
points as small black disks. 

Continuing with geometry, a 
problem with Figure 1 is that it 
shows only part of C. To remedy 
this problem, we can use the 
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coordinates (u,v) = (x,y)/(r2 + x2 + y2)1/2 for any positive real r we find convenient. 
Via these coordinates, we can draw the entire x-y plane as the open unit disk U in 
the u-v plane. Exactly half the area of U comes from the disk of radius r about the 
origin in the x-y plane. Accordingly, one can take r small or large according to 
whether one wants to dedicate visual space to the part of the x-y plane near or far 
from the origin. In Figure 2, we view all of C in this way, taking r=3. So we learn 
that Figure 1 missed a whole piece of our C, the part drawn in orange at the lower 
right of Figure 2. In fact, Figure 1 missed this piece by a lot, since the closest the 
orange part of C comes to the origin is at (x,y) ≈ (20,–45). 

Figure 2 has actually given us more insight than we asked of it, because the circle 
∂U bounding U also plays a role. In fact, if we identify opposite points of this 
boundary circle then we have just abstractly sewn the closed unit diskU into the 
"projective plane." Our affine curve C has gained four new points to become its 
projective completion C. 

Now let's mix algebraic and geometric thinking, as even beginning algebraic 
geometers should! In elementary algebraic terms, Exercise 4.20 is asking for non-
constant rational functions x(t) and y(t) of minimal degree such that f(x(t),y(t)) is 
identically zero. Geometrically, 
one can think of t as time, and 
then (x(t),y(t)) should be thought 
of as a moving point. The 
numbers near the curve on Figure 
2 capture the solution we will be 
algebraically producing. At t= –∞, 
the point starts at the point (1,1) 
which is labeled ±∞ on Figure 2. 
Then, as t increases, the point (x
(t),y(t)) moves first upwards on 
the red arc. It goes straight 
through points at infinity, and also 
straight through singular points, 
moving mostly from left to right. 
Finally at t=∞ the point returns to 
(1,1), having visited each singular 
point twice and all other points 
exactly once. Thus — despite our 
color scheme! — the curve C 
forms a single loop. 

If it shocks your mathematical 
intuition that a plane curve C given by a random f(x,y) should be so parametrizable, 
then you are right! Only very special curves are parametrizable. If you are 
intimidated also about passing from abstract existence to actually finding (x(t),y(t)), 
then you are again reacting properly. In practice, it would be impossible to find (x
(t),y(t)) by naive algebraic fiddling with variables. A systematic geometry-inspired 
approach is required, and that is the subject of RAC! 

To do at least some justice to the systematic approach of RAC, let's consider a 
general polynomial f(x,y) with real coefficients. Let d be its degree, i.e. the largest 

i+j appearing among its terms axiyj. Then a sufficient condition for parametrizability 
is that the corresponding complete curve C consists of a single loop which crosses 
itself at (d–1)(d–2)/2 singular points in the x-y plane. This sufficient condition is 
satisfied in our case, since d=4 and (4–1)(4–2)/2=3. A weaker but similar condition, 
involving complex numbers among other things, is necessary and sufficient for 
parametrizability. 

One of RAC's central algorithms is parametrization-by-adjoints in Section 4.7. 
Actually using this algorithm to parametrize a curve meeting our sufficient condition 
is a very attractive mix of algebra and geometry. The algorithm comes in several 
variants, as the adjoint curves involved can have degree d–2, d–1 or d. We will use 
the d–2 variant for our C, simultaneously indicating how it works for general d ≥ 3. 

First, one locates the singularities of C by finding the common roots of f(x,y) and its 
partial derivatives fx(x,y) and fy(x,y). This is a standard computer algebra task. In 
our case, the three singularities are (0,0), (–√2,1–√2), and (√2,1+√2). Second, 
one chooses d–3 non-singular points of C. In our case, we need just one point and 
we choose (1,1). Now let V be the vector space of polynomials of degree ≤ d–2. In 
our case, the general element of V has the form 

g(x,y) = a x2 + b x y + c y 2 + d x + e y + f.
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Let A be the subspace of V consisting of those g(x,y) which vanish on all (d–1)(d–
2)/2 singular points and also on the d–3 chosen non-singular points. A key feature of 
this construction, expected by a naïve dimension count, is that A always has 
dimension two. Let g0(x,y) and g1(x,y) be a basis for A, and form the one parameter 
family of polynomials gt(x,y) = (1–t) g0(x,y) + t g1(x,y). In our case, suitable 
choices yield 

gt(x,y) = 2 x
2 + (–5 – t) x y + 2 y 2 + (1 – t) x + 2 t y.

 

  

Let D
t
 be the solution curve of gt(x,y)=0. The Dt are the adjoint curves in question. 

Another key feature of this construction, a consequence of Bezout's theorem this 
time, is that for all but finitely many t, the curves C and D

t
 meet at exactly one point 

beyond the imposed intersection points. The remaining intersection point (x(t),y(t)), 
unlike the imposed ones, varies with t. To find x(t), one eliminates y from the 
system 

f(x,y) = gt(x,y)=0
 

and solves for x in terms of t. This is standard computer algebra, essentially a single 
call to a resultant command. Likewise, to find y(t) one eliminates x and solves for y. 
In our case, the final answer is 

with c(t) = t4 + 18 t 3 – 16 t 2 – 994 t – 945. We are finally done with Exercise 4.20!
 

As RAC rightly emphasizes, a parametrization for a curve gives one much better 
control over the curve than one has from a defining equation alone. For example, 
finding points (x,y) on our C with rational coordinates is difficult from the original 
description f(x,y)=0. It is trivial from the parametrization, as one can simply plug in 
rational t. Likewise, the colors in Figures 1 and 2 were easy to draw only after we 
had the parametrization. The roots of c(t) are at approximately t=–14.9, –9.2, –1.0, 
and 7.0; these roots serve as start and end times for our color intervals. 

In some ways, RAC has a classical feel. For example, as the authors indicate, the 
main idea of the parametrization-by-adjoints algorithm is already present in book 
form in Walker's classic 1950 text. In fact, Theorem III.5.1 there gives the d–1 
version. However RAC is very modern in its emphasis on computational issues. For 
example, the issue of solving problems like Exercise 4.20 without ever writing down 
computer-unfriendly irrationalities like √2 is thoroughly treated. 

I am looking forward to a future when algebraic geometry has thoroughly lost its 
aura of inaccessibility. Books like RAC are hastening the day. If you understood this 
review, you are ready to read RAC. If you were annoyed at how I suppressed 
complex numbers, you are more than ready! 
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x(t) = (t–1)(t–23)(t2 + 20 t + 23)/c(t)
 

y(t) = (t–1)3 (t–23)/c(t)
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