DIFFERENTIAL METHODS FOR 0-DIMENSIONAL SCHEMES

MARTIN KREUZER

Given a 0-dimensional subscheme X in P^n , the traditional way to study the geometry of X is to look at algebraic properties of its homogeneous coordinate ring $R = K[x_0, \ldots, x_n]/I_X$ and the structure of the canonical module of R. Here we introduce and exploit a novel approach: we look at the Kaehler differential algebra $\Omega_{R/K}$ which is the exterior algebra over the Kaehler differential module $\Omega^1_{R/K}$ of X. Based on a careful examination of the embedding of R into its normal closure and the corresponding embedding of $\Omega^1_{R/K}$, we provide new bounds for the regularity index of the Kaehler differential module and connect it to the geometry of X in low embedding dimensions.