[bib]
@incollection{RISC5913,
author = {Ralf Hemmecke and Silviu Radu and Liangjie Ye},
title = {{The Generators of all Polynomial Relations among Jacobi Theta Functions}},
booktitle = {{Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory}},
language = {english},
abstract = {In this article, we consider the classical Jacobi theta functions$\theta_i(z)$, $i=1,2,3,4$ and show that the ideal of all polynomialrelations among them with coefficients in$K :=\setQ(\theta_2(0|\tau),\theta_3(0|\tau),\theta_4(0|\tau))$ isgenerated by just two polynomials, that correspond to well knownidentities among Jacobi theta functions.},
series = {Texts & Monographs in Symbolic Computation},
number = {18-09},
pages = {259--268},
publisher = {Springer International Publishing},
address = {Cham},
isbn_issn = {978-3-030-04479-4},
year = {2019},
note = {Also available as RISC Report 18-09 http://www.risc.jku.at/publications/download/risc_5719/thetarelations.pdf},
editor = {Johannes Blümlein and Carsten Schneider and Peter Paule},
refereed = {yes},
length = {9},
url = {https://doi.org/10.1007/978-3-030-04480-0_11}
}